Data Mining for Business Analytics & Data Analysis in Python
- Descrição
- Currículo
- FAQ
- Revisões
Are you looking to learn how to do Data Mining like a pro? Do you want to find actionable business insights using data science and analytics and explainable artificial intelligence? You have come to the right place.
I will show you the most impactful Data Mining algorithms using Python that I have witnessed in my professional career to derive meaningful insights and interpret data.
In the age of endless spreadsheets, it is easy to feel overwhelmed with so much data. This is where Data Mining techniques come in. To swiftly analyze, find patterns, and deliver an outcome to you. For me, the Data Mining value added is that you stop the number crunching and pivot table creation, leaving time to come with actionable plans based on the insights.
Now, why should you enroll in the course? Let me give you four reasons.
The first is that you will learn the models’ intuition without focusing too much on the math. It is crucial that you know why a model makes sense and the underlying assumptions behind it. I will explain to you each model using words, graphs, and metaphors, leaving math and the Greek alphabet to the bare minimum.
The second reason is the thorough course structure of the most impactful Data Mining techniques for Data Science and Business Analytics. Based on my experience, the course curriculum has the algorithms I believe to be most impactful, up-to-date, and sought after. Here is the list of the algorithms we will learn:
Supervised Machine Learning
-
Survival Analysis
-
Cox Proportional Hazard Regression
-
CHAID
Unsupervised Machine Learning
-
Cluster Analysis – Gaussian Mixture Model
-
Dimension Reduction – PCA and Manifold Learning
-
Association Rule Learning
· Explainable Artificial Intelligence
-
Random Forest and Feature Seletion and Importance
-
LIME
-
XGBoost and SHAP
The third reason is that we code Python together, line by line. Programming is challenging, especially for beginners. I will guide you through every Python code snippet. I will also explain all parameters and functions that you need to use, step by step. In the end, you will have code templates ready to use in your problems.
The final reason is that you practice, practice, practice. At the end of each section, there is a challenge. The goal is that you apply immediately what you have learned. I give you a dataset and a list of actions you need to take to solve it. I think it is the best way to really cement all the techniques in you. Hence, there will be 2 case studies per technique.
I hope to have spiked your interest, and I am looking forward to seeing you inside!
-
5Game Plan for Survival Analysis sectionVídeo Aula
-
6Survival Analyisis IntroductionVídeo Aula
-
7Case Study Briefing and Step by Step GuideVídeo Aula
-
8Python - Changing DirectoryVídeo Aula
-
9Python - Importing LibrariesVídeo Aula
-
10Python - Loading DataVídeo Aula
-
11Python - Transforming Dependent VariableVídeo Aula
-
12Kaplan-Meyer EstimatorVídeo Aula
-
13CensoringVídeo Aula
-
14Python - Kaplan-Meyer EstimatorVídeo Aula
-
15Python - Calculating Specific EventsVídeo Aula
-
16Python - Plotting Survival CurvesVídeo Aula
-
17Python - Plotting Cumulative CurvesVídeo Aula
-
18Log Rank TestVídeo Aula
-
19Python - Subsetting DataframeVídeo Aula
-
20Python - Kaplan-Meyer Estimator per GenderVídeo Aula
-
21Python - Plotting both Survival CurvesVídeo Aula
-
22Python - Log Rank TestVídeo Aula
-
23Extra Resources and Survival Analysis ChallengeVídeo Aula
-
24Python - Survival Analysis Challenge SolutionsVídeo Aula
-
25Game PlanVídeo Aula
-
26Cox Proportional Hazard RegressionVídeo Aula
-
27Case Study Briefing and Step by Step GuideVídeo Aula
-
28Python - Preparing Script and DataVídeo Aula
-
29Python - Cox Proportional HazardVídeo Aula
-
30Python - Regression Summary VisualizationVídeo Aula
-
31Extra Resources and ChallengeVídeo Aula
-
32Python - Solution ChallengesVídeo Aula
-
33Game PlanVídeo Aula
-
34Case Study Briefing and Step by Step GuideVídeo Aula
-
35Problem StatementVídeo Aula
-
36Python - Installing librariesVídeo Aula
-
37Python - Importing Libraries and DataVídeo Aula
-
38Introducing CHAIDVídeo Aula
-
39CHAID Statistics and QuirksVídeo Aula
-
40Python - Removing column and unique values checkVídeo Aula
-
41Python - Visualizing Jobs VariableVídeo Aula
-
42Python - Transforming Jobs VariableVídeo Aula
-
43Python - Transforming Experience VariableVídeo Aula
-
44Python - Transform Minimum VariableVídeo Aula
-
45Python - Modify other variables to dummy variablesVídeo Aula
-
46Python - CHAID PreparationVídeo Aula
-
47Python - CHAID ModelVídeo Aula
-
48Python - Data Visualization with CHAID ModelVídeo Aula
-
49Extra Resources and ChallengeVídeo Aula
-
50Python - Challenge solutionsVídeo Aula
-
51Game PlanVídeo Aula
-
52Case Study Briefing and ClusteringVídeo Aula
-
53Gaussian Mixture Model vs. KmeansVídeo Aula
-
54Python - Changing Directory and Importing LibrariesVídeo Aula
-
55Python - Loading DataVídeo Aula
-
56AIC, BIC, and Step-by-Step GuideVídeo Aula
-
57Python - Optimal ClustersVídeo Aula
-
58Python - Gaussian Mixture ModelVídeo Aula
-
59Python - Cluster PredictionVídeo Aula
-
60Python - Probability of belonging to each clusterVídeo Aula
-
61Python - Cluster InterpretationVídeo Aula
-
62Extra Resources and ChallengeVídeo Aula
-
63Python - Challenge solutionsVídeo Aula
-
64Will you help me?Vídeo Aula
-
65Your feedback is invaluableTexto
-
66Game PlanVídeo Aula
-
67What is Dimension Reduction?Vídeo Aula
-
68Principal Component AnalysisVídeo Aula
-
69Python - Importing LibrariesVídeo Aula
-
70Python - Loading DataVídeo Aula
-
71Python - Transforming String VariablesVídeo Aula
-
72Python - Correlation MatrixVídeo Aula
-
73Python - Standardizing VariablesVídeo Aula
-
74Python - Optimal Number of ComponentsVídeo Aula
-
75Python - Cumulative Explained VarianceVídeo Aula
-
76Python - PCAVídeo Aula
-
77Python - PCA interpretationVídeo Aula
-
78Manifold Learning and t-SNEVídeo Aula
-
79Python - t-SNEVídeo Aula
-
80Python -Visualizing Manifold LearningVídeo Aula
-
81Extra Resources and ChallengeVídeo Aula
-
82Python - Challenge SolutionsVídeo Aula
