Python Data Science with Pandas: Master 12 Advanced Projects
- Descrição
- Currículo
- FAQ
- Revisões
***Fully updated and revised in October 2024***
Welcome to the first advanced and project-based Pandas Data Science Course!
This Course starts where many other courses end: You can write some Pandas code but you are still struggling with real-world Projects because
-
Real-World Data is typically not provided in a single or a few text/excel files -> more advanced Data Importing Techniques are required
-
Real-World Data is large, unstructured, nested and unclean -> more advanced Data Manipulation and Data Analysis/Visualization Techniques are required
-
many easy-to-use Pandas methods work best with relatively small and clean Datasets -> real-world Datasets require more General Code (incorporating other Libraries/Modules)
No matter if you need excellent Pandas skills for Data Analysis, Machine Learning or Finance purposes, this is the right Course for you to get your skills to Expert Level! Master your real-world Projects!
This Course covers the full Data Workflow A-Z:
-
Import (complex and nested) Data from JSON files.
-
Import (complex and nested) Data from the Web with Web APIs, JSON and Wrapper Packages.
-
Import (complex and nested) Data from SQL Databases.
-
Store (complex and nested) Data in JSON files.
-
Store (complex and nested) Data in SQL Databases.
-
Work with Pandas and SQL Databases in parallel (getting the best of both worlds).
-
Efficiently import and merge Data from many text/CSV files.
-
Clean large and messy Datasets with more General Code.
-
Clean, handle and flatten nested and stringified Data in DataFrames.
-
Know how to handle and normalize Unicode strings.
-
Merge and Concatenate many Datasets efficiently.
-
Scale and Automate data merging.
-
Explanatory Data Analysis and Data Presentation with advanced Visualization Tools (advanced Matplotlib & Seaborn).
-
Test the Performance Limits of Pandas with advanced Data Aggregations and Grouping.
-
Data Preprocessing and Feature Engineering for Machine Learning with simple Pandas code.
-
Use your Data 1: Train and test Machine Learning Models on preprocessed Data and analyze the results.
-
Use your Data 2: Backtesting and Forward Testing of Investment Strategies (Finance & Investment Stack).
-
Use your Data 3: Index Tracking (Finance & Investment Stack).
-
Use your Data 4: Present your Data with Python in a nicely looking HTML format (Website Quality).
-
and many more…
I am Alexander Hagmann, Finance Professional and Data Scientist (> 7 Years Industry Experience) and best-selling Instructor for Pandas, (Financial) Data Science and Finance with Python. Looking forward to seeing you in this Course!
-
1Course Overview (don´t skip!)Vídeo Aula
-
2Tips: How to get the most out of this Course (don´t skip!)Vídeo Aula
-
3FAQ / Your Questions answeredTexto
-
4How to download and install Anaconda for Python codingVídeo Aula
-
5Jupyter Notebooks - let´s get startedVídeo Aula
-
6How to work with Jupyter NotebooksVídeo Aula
-
7Project OverviewVídeo Aula
-
8Downloads (Project 1) (Update: October 2024)Vídeo Aula
-
9Project Brief for Self-CodersVídeo Aula
-
10Data Import from csv file and first InspectionVídeo Aula
-
11The best and the worst movies... (Part 1)Vídeo Aula
-
12The best and the worst movies... (Part 2)Vídeo Aula
-
13Which Movie would you like to see next?Vídeo Aula
-
14What are the most common Words in Movie Titles, Taglines and Overviews?Vídeo Aula
-
15Are Franchises more successful?Vídeo Aula
-
16What are the most successful Franchises?Vídeo Aula
-
17The most successful DirectorsVídeo Aula
-
18The most successful Actors (Part 1)Vídeo Aula
-
19The most successful Actors (Part 2)Vídeo Aula
-
20Now it´s your turn (Homework)Texto
-
21IntroductionVídeo Aula
-
22Test your debugging skills!Vídeo Aula
-
23Major reasons for Coding ErrorsVídeo Aula
-
24The most commonly made Errors at a glanceVídeo Aula
-
25Omitting cells, changing the sequence and moreVídeo Aula
-
26IndexErrorsVídeo Aula
-
27Indentation ErrorsVídeo Aula
-
28Misuse of function names and keywordsVídeo Aula
-
29TypeErrors and ValueErrorsVídeo Aula
-
30**NEW** Debugging Pandas Errors with ChatGPTVídeo Aula
-
31Getting help on StackOverflow.comVídeo Aula
-
32How to traceback more complex ErrorsVídeo Aula
-
33Problems with the Python InstallationVídeo Aula
-
34External Factors and IssuesVídeo Aula
-
35Errors related to the course content (Transcription Errors)Vídeo Aula
-
36Summary and Debugging Flow-ChartVídeo Aula
-
37**NEW** The Debugging Flow-Chart with ChatGPTVídeo Aula
-
38Project OverviewVídeo Aula
-
39What is JSON?Vídeo Aula
-
40Downloads (Project 2) (Update: October 2024)Texto
-
41Project Brief for Self-CodersVídeo Aula
-
42Importing Data from JSON filesVídeo Aula
-
43JSON and Orientation/FormatsVídeo Aula
-
44What is an API? - The Movie Database APIVídeo Aula
-
45How to get your personal TMDB API-KEYTexto
-
46Working with APIs and JSON (Part 1)Vídeo Aula
-
47How to work with your own API-KEYVídeo Aula
-
48Working with APIs and JSON (Part 2)Vídeo Aula
-
49Importing and Storing the Movies Dataset (Best Practice)Vídeo Aula
-
50Importing and Storing the Movies Dataset (Real World Scenario)Vídeo Aula
-
51Project OverviewVídeo Aula
-
52Downloads (Project 3) (Update: October 2024)Texto
-
53Project Brief for Self-CodersVídeo Aula
-
54First StepsVídeo Aula
-
55Dropping irrelevant ColumnsVídeo Aula
-
56How to handle stringified JSON columns (Part 1)Vídeo Aula
-
57How to handle stringified JSON columns (Part 2)Vídeo Aula
-
58How to flatten nested ColumnsVídeo Aula
-
59How to clean Numerical Columns (Part 1)Vídeo Aula
-
60How to clean Numerical Columns (Part 2)Vídeo Aula
-
61How to clean Columns with DateTime InformationVídeo Aula
-
62How to clean String / Text ColumnsVídeo Aula
-
63How to remove DuplicatesVídeo Aula
-
64Handling Missing Values & Removing Obervations/RowsVídeo Aula
-
65Final StepsVídeo Aula
-
66Project OverviewVídeo Aula
-
67Downloads (Project 4) (Update: October 2024)Texto
-
68Project Brief for Self-CodersVídeo Aula
-
69Getting the DatasetsVídeo Aula
-
70Preparing the Data for MergeVídeo Aula
-
71Merging the Data (Left Join)Vídeo Aula
-
72Cleaning and Transforming the new "Cast" ColumnVídeo Aula
-
73Cleaning and Transforming the new "Crew" ColumnVídeo Aula
-
74Final StepsVídeo Aula
-
75Project OverviewVídeo Aula
-
76What is a Database / SQL?Vídeo Aula
-
77Downloads (Project 5) (Update: October 2024)Texto
-
78Project Brief for Self-CodersVídeo Aula
-
79How to create an SQLite DatabaseVídeo Aula
-
80How to load Data from DataFrames into an SQLite DatabaseVídeo Aula
-
81How to load Data from SQLite Databases into DataFramesVídeo Aula
-
82Some simple SQL QueriesVídeo Aula
-
83Some more SQL QueriesVídeo Aula
-
84Join QueriesVídeo Aula
-
85Final Case StudyVídeo Aula
